Crate object_store

source ·
Expand description

object_store

This crate provides a uniform API for interacting with object storage services and local files via the ObjectStore trait.

Using this crate, the same binary and code can run in multiple clouds and local test environments, via a simple runtime configuration change.

Highlights

  1. A focused, easy to use, idiomatic, well documented, high performance, async API.

  2. Production quality, leading this crate to be used in large scale production systems, such as crates.io and InfluxDB IOx.

  3. Stable and predictable governance via the Apache Arrow project.

Originally developed for InfluxDB IOx and subsequently donated to Apache Arrow.

Available ObjectStore Implementations

By default, this crate provides the following implementations:

Feature flags are used to enable support for other implementations:

Adapters

ObjectStore instances can be composed with various adapters which add additional functionality:

List objects:

Use the ObjectStore::list method to iterate over objects in remote storage or files in the local filesystem:


use std::sync::Arc;
use object_store::{path::Path, ObjectStore};
use futures::stream::StreamExt;

// create an ObjectStore
let object_store: Arc<dyn ObjectStore> = Arc::new(get_object_store());

// Recursively list all files below the 'data' path.
// 1. On AWS S3 this would be the 'data/' prefix
// 2. On a local filesystem, this would be the 'data' directory
let prefix: Path = "data".try_into().unwrap();

// Get an `async` stream of Metadata objects:
 let list_stream = object_store
     .list(Some(&prefix))
     .await
     .expect("Error listing files");

 // Print a line about each object based on its metadata
 // using for_each from `StreamExt` trait.
 list_stream
     .for_each(move |meta|  {
         async {
             let meta = meta.expect("Error listing");
             println!("Name: {}, size: {}", meta.location, meta.size);
         }
     })
     .await;

Which will print out something like the following:

Name: data/file01.parquet, size: 112832
Name: data/file02.parquet, size: 143119
Name: data/child/file03.parquet, size: 100
...

Fetch objects

Use the ObjectStore::get method to fetch the data bytes from remote storage or files in the local filesystem as a stream.


use std::sync::Arc;
use object_store::{path::Path, ObjectStore};
use futures::stream::StreamExt;

// create an ObjectStore
let object_store: Arc<dyn ObjectStore> = Arc::new(get_object_store());

// Retrieve a specific file
let path: Path = "data/file01.parquet".try_into().unwrap();

// fetch the bytes from object store
let stream = object_store
    .get(&path)
    .await
    .unwrap()
    .into_stream();

// Count the '0's using `map` from `StreamExt` trait
let num_zeros = stream
    .map(|bytes| {
        let bytes = bytes.unwrap();
       bytes.iter().filter(|b| **b == 0).count()
    })
    .collect::<Vec<usize>>()
    .await
    .into_iter()
    .sum::<usize>();

println!("Num zeros in {} is {}", path, num_zeros);

Which will print out something like the following:

Num zeros in data/file01.parquet is 657

Put object

Use the ObjectStore::put method to save data in remote storage or local filesystem.

 use object_store::ObjectStore;
 use std::sync::Arc;
 use bytes::Bytes;
 use object_store::path::Path;

 let object_store: Arc<dyn ObjectStore> = Arc::new(get_object_store());
 let path: Path = "data/file1".try_into().unwrap();
 let bytes = Bytes::from_static(b"hello");
 object_store
     .put(&path, bytes)
     .await
     .unwrap();

Multipart put object

Use the ObjectStore::put_multipart method to save large amount of data in chunks.

 use object_store::ObjectStore;
 use std::sync::Arc;
 use bytes::Bytes;
 use tokio::io::AsyncWriteExt;
 use object_store::path::Path;

 let object_store: Arc<dyn ObjectStore> = Arc::new(get_object_store());
 let path: Path = "data/large_file".try_into().unwrap();
 let (_id, mut writer) =  object_store
     .put_multipart(&path)
     .await
     .unwrap();
 let bytes = Bytes::from_static(b"hello");
 writer.write_all(&bytes).await.unwrap();
 writer.flush().await.unwrap();
 writer.shutdown().await.unwrap();

Modules

  • An object store implementation for S3
  • An object store implementation for Azure blob storage
  • Utilities for performing tokio-style buffered IO
  • A ChunkedStore that can be used to test streaming behaviour
  • Utility for streaming newline delimited files from object storage
  • An object store implementation for Google Cloud Storage
  • An object store implementation for generic HTTP servers
  • An object store that limits the maximum concurrency of the wrapped implementation
  • An object store implementation for a local filesystem
  • An in-memory object store implementation
  • Cloud Multipart Upload
  • Path abstraction for Object Storage
  • An object store wrapper handling a constant path prefix
  • A throttling object store wrapper

Structs

  • Exponential backoff with jitter
  • HTTP client configuration for remote object stores
  • Options for a get request, such as range
  • Result for a get request
  • Result of a list call that includes objects, prefixes (directories) and a token for the next set of results. Individual result sets may be limited to 1,000 objects based on the underlying object storage’s limitations.
  • The metadata that describes an object.
  • Contains the configuration for how to respond to server errors
  • A static set of credentials

Enums

Constants

Traits

Functions

Type Aliases

  • An alias for a dynamically dispatched object store implementation.
  • Id type for multi-part uploads.
  • A specialized Result for object store-related errors